Learning to Rank Academic Experts in the DBLP Dataset

نویسندگان

  • Catarina Moreira
  • Bruno Martins
  • Pável Calado
چکیده

Expert finding is an information retrieval task that is concerned with the search for the most knowledgeable people with respect to a specific topic, and the search is based on documents that describe people’s activities. The task involves taking a user query as input and returning a list of people who are sorted by their level of expertise with respect to the user query. Despite recent interest in the area, the current state-of-the-art techniques lack in principled approaches for optimally combining different sources of evidence. This article proposes two frameworks for combining multiple estimators of expertise. These estimators are derived from textual contents, from graph-structure of the citation patterns for the community of experts, and from profile information about the experts. More specifically, this article explores the use of supervised learning to rank methods, as well as rank aggregation approaches, for combing all of the estimators of expertise. Several supervised learning algorithms, which are representative of the pointwise, pairwise and listwise approaches, were tested, and various state-of-the-art data fusion techniques were also explored for the rank aggregation framework. Experiments that were performed on a dataset of academic publications from the Computer Science domain attest the adequacy of the proposed approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective Learning to Rank Persian Web Content

Persian language is one of the most widely used languages in the Web environment. Hence, the Persian Web includes invaluable information that is required to be retrieved effectively. Similar to other languages, ranking algorithms for the Persian Web content, deal with different challenges, such as applicability issues in real-world situations as well as the lack of user modeling. CF-Rank, as a ...

متن کامل

Learning to Rank Experts in Academic Digital Libraries

The task of expert finding has been getting increasing attention in the information retrieval literature. However, the current state-of-the-art still lacks in principled approaches for combining different sources of evidence in an optimal way. This article explores the usage of learning to rank methods as a principled approach for combining multiple estimators of expertise, derived from the tex...

متن کامل

Learning to Rank for Expert Search in Digital Libraries of Academic Publications

The task of expert finding has been getting increasing attention in information retrieval literature. However, the current state-of-the-art is still lacking in principled approaches for combining different sources of evidence in an optimal way. This paper explores the usage of learning to rank methods as a principled approach for combining multiple estimators of expertise, derived from the text...

متن کامل

Shifu: Deep Learning Based Advisor-advisee Relationship Mining in Scholarly Big Data

Scholars in academia are involved in various social relationships such as advisor-advisee relationships. The analysis of such relationship can provide invaluable information for understanding the interactions among scholars as well as providing many researcher-specific applications such as advisor recommendation and academic rising star identification. However, in most cases, high quality advis...

متن کامل

Using Rank Aggregation for Expert Search in Academic Digital Libraries

The task of expert finding has been getting increasing attention in information retrieval literature. However, the current state-of-the-art is still lacking in principled approaches for combining different sources of evidence. This paper explores the usage of unsupervised rank aggregation methods as a principled approach for combining multiple estimators of expertise, derived from the textual c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Systems

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2015